Package: dacc 0.0-6

dacc: Detection and Attribution Analysis of Climate Change

Conduct detection and attribution of climate change using methods including optimal fingerprinting via generalized total least squares or estimating equation approach from Ma et al. (2023) <doi:10.1175/JCLI-D-22-0681.1>. Provide shrinkage estimators for covariance matrix from Ledoit and Wolf (2004) <doi:10.1016/S0047-259X(03)00096-4>, and Ledoit and Wolf (2017) <doi:10.2139/ssrn.2383361>.

Authors:Yan Li [aut, cre], Kun Chen [aut], Jun Yan [aut]

dacc_0.0-6.tar.gz
dacc_0.0-6.zip(r-4.5)dacc_0.0-6.zip(r-4.4)dacc_0.0-6.zip(r-4.3)
dacc_0.0-6.tgz(r-4.5-any)dacc_0.0-6.tgz(r-4.4-any)dacc_0.0-6.tgz(r-4.3-any)
dacc_0.0-6.tar.gz(r-4.5-noble)dacc_0.0-6.tar.gz(r-4.4-noble)
dacc_0.0-6.tgz(r-4.4-emscripten)dacc_0.0-6.tgz(r-4.3-emscripten)
dacc.pdf |dacc.html
dacc/json (API)

# Install 'dacc' in R:
install.packages('dacc', repos = c('https://liyanstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/liyanstat/dacc/issues

Datasets:
  • globalDat - Sample Dataset Used in Numerical Studies of "Detection and Attribution Analysis of Temperature Changes with Estimating Equations".
  • simDat - Sample Dataset in Simulation Studies of "Regularized Fingerprinting in Detection and Attribution of Climate Change with Weight Matrix Optimizing the Efficiency in Scaling Factor Estimation".

On CRAN:

4.41 score 13 stars 338 downloads 3 exports 33 dependencies

Last updated 30 days agofrom:f6385723e5. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 01 2025
R-4.5-winOKFeb 01 2025
R-4.5-macOKFeb 01 2025
R-4.5-linuxOKFeb 01 2025
R-4.4-winOKFeb 01 2025
R-4.4-macOKFeb 01 2025
R-4.3-winOKFeb 01 2025
R-4.3-macOKFeb 01 2025

Exports:CovestfingerprintfpPrep

Dependencies:CFtimeclicpp11dplyrfansigenericsgluehmsIsojanitorlatticelifecyclelubridatemagrittrMASSncdf4pillarpkgconfigpracmapurrrR6rlangsnakecasespstringistringrtibbletidyrtidyselecttimechangeutf8vctrswithr