Package: dacc 0.0-5
dacc: Detection and Attribution Analysis of Climate Change
Conduct detection and attribution of climate change using methods including optimal fingerprinting via generalized total least squares or estimating equation approach from Ma et al. (2023) <doi:10.1175/JCLI-D-22-0681.1>. Provide shrinkage estimators for covariance matrix from Ledoit and Wolf (2004) <doi:10.1016/S0047-259X(03)00096-4>, and Ledoit and Wolf (2017) <doi:10.2139/ssrn.2383361>.
Authors:
dacc_0.0-5.tar.gz
dacc_0.0-5.zip(r-4.5)dacc_0.0-5.zip(r-4.4)dacc_0.0-5.zip(r-4.3)
dacc_0.0-5.tgz(r-4.4-any)dacc_0.0-5.tgz(r-4.3-any)
dacc_0.0-5.tar.gz(r-4.5-noble)dacc_0.0-5.tar.gz(r-4.4-noble)
dacc_0.0-5.tgz(r-4.4-emscripten)dacc_0.0-5.tgz(r-4.3-emscripten)
dacc.pdf |dacc.html✨
dacc/json (API)
# Install 'dacc' in R: |
install.packages('dacc', repos = c('https://liyanstat.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/liyanstat/dacc/issues
- globalDat - Sample Dataset Used in Numerical Studies of "Detection and Attribution Analysis of Temperature Changes with Estimating Equations".
- simDat - Sample Dataset in Simulation Studies of "Regularized Fingerprinting in Detection and Attribution of Climate Change with Weight Matrix Optimizing the Efficiency in Scaling Factor Estimation".
Last updated 3 months agofrom:cc4ac75fd7. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-win | OK | Nov 23 2024 |
R-4.5-linux | OK | Nov 23 2024 |
R-4.4-win | OK | Nov 23 2024 |
R-4.4-mac | OK | Nov 23 2024 |
R-4.3-win | OK | Nov 23 2024 |
R-4.3-mac | OK | Nov 23 2024 |
Exports:CovestfingerprintfpPrep
Dependencies:CFtimeclicpp11dplyrfansigenericsgluehmsIsojanitorlatticelifecyclelubridatemagrittrMASSncdf4pillarpkgconfigpracmapurrrR6rlangsnakecasespstringistringrtibbletidyrtidyselecttimechangeutf8vctrswithr