Package: dacc 0.0-5

dacc: Detection and Attribution Analysis of Climate Change

Conduct detection and attribution of climate change using methods including optimal fingerprinting via generalized total least squares or estimating equation approach from Ma et al. (2023) <doi:10.1175/JCLI-D-22-0681.1>. Provide shrinkage estimators for covariance matrix from Ledoit and Wolf (2004) <doi:10.1016/S0047-259X(03)00096-4>, and Ledoit and Wolf (2017) <doi:10.2139/ssrn.2383361>.

Authors:Yan Li [aut, cre], Kun Chen [aut], Jun Yan [aut]

dacc_0.0-5.tar.gz
dacc_0.0-5.zip(r-4.5)dacc_0.0-5.zip(r-4.4)dacc_0.0-5.zip(r-4.3)
dacc_0.0-5.tgz(r-4.4-any)dacc_0.0-5.tgz(r-4.3-any)
dacc_0.0-5.tar.gz(r-4.5-noble)dacc_0.0-5.tar.gz(r-4.4-noble)
dacc_0.0-5.tgz(r-4.4-emscripten)dacc_0.0-5.tgz(r-4.3-emscripten)
dacc.pdf |dacc.html
dacc/json (API)

# Install 'dacc' in R:
install.packages('dacc', repos = c('https://liyanstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/liyanstat/dacc/issues

Datasets:
  • globalDat - Sample Dataset Used in Numerical Studies of "Detection and Attribution Analysis of Temperature Changes with Estimating Equations".
  • simDat - Sample Dataset in Simulation Studies of "Regularized Fingerprinting in Detection and Attribution of Climate Change with Weight Matrix Optimizing the Efficiency in Scaling Factor Estimation".

On CRAN:

4.56 score 12 stars 232 downloads 3 exports 33 dependencies

Last updated 3 months agofrom:cc4ac75fd7. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winOKNov 23 2024
R-4.5-linuxOKNov 23 2024
R-4.4-winOKNov 23 2024
R-4.4-macOKNov 23 2024
R-4.3-winOKNov 23 2024
R-4.3-macOKNov 23 2024

Exports:CovestfingerprintfpPrep

Dependencies:CFtimeclicpp11dplyrfansigenericsgluehmsIsojanitorlatticelifecyclelubridatemagrittrMASSncdf4pillarpkgconfigpracmapurrrR6rlangsnakecasespstringistringrtibbletidyrtidyselecttimechangeutf8vctrswithr